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Glycosphingolipids and mitochondria:
Role in apoptosis and disease
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Glycosphingolipids (GSLs) comprise a class of lipids with important structural and signaling functions. Synthesized from
ceramide in the Golgi, they are subsequently distributed to different compartments, most predominantly in the plasma
membrane where they integrate signaling platforms. A recently characterized trafficking of ganglioside GD3 (GD3), a GSLs
with two sialic-acid residues, to mitochondria has revealed a novel function of this lipid as a death effector. In addition to
the interaction of GD3 with mitochondria recruiting these organelles to apoptotic pathways, GD3 disables survival paths
dependent on NF-κB, thus favoring the balance towards cell death. The present review gathers the evidence documenting
this emerging function of GSLs in cell death and their involvement in pathological states.
Published in 2004.

Keywords: GD3, apoptosome, oxidative stress, cell death, NF-κB, cancer therapy

Introduction

Glycosphingolipids (GSLs) are ubiquitous membrane con-
stituents that, in addition to their structural role, are emerg-
ing as signaling lipids involved in several pathological states.
GSLs constitute an amphipathic family of lipids made up of a
ceramide lipid anchor linked to an oligosaccharide chain of
variable length and complexity. Gangliosides are prominent
members of GSLs that are distinguished by the presence of
one or more sialic acid residues. The abundance and complex-
ity of GSLs are of particular relevance in brain where they
were discovered in 1942 by Klenk et al. [1], displaying a com-
plex heterogeneity as demonstrated later on by Svennerholm
[2]. These lipids, however, are found on plasma membranes
from all mammalian cells, where they are concentrated in mi-
crodomains specialized for cell signaling [3]. Gangliosides have
been implicated in fundamental cell processes such as growth,
differentiation and adhesion. In addition to these functions, an
emerging role of GSLs, particularly ganglioside GD3, as apop-
tosis regulators is increasingly recognized due to their ability to
recruit mitochondria to cell death pathways [4]. In this review
we will summarize the evidence provided recently documenting
the role of GSLs, with particular focus on ganglioside GD3, in
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apoptosis through mitochondrial-dependent pathways and their
role in disease.

Ceramide as the source of GSLs and role in cell death

The biosynthesis of gangliosides involves several steps that
occur in different intracellular compartments and imply the
sequential addition of oligossacharides to ceramide. Ceramide
is synthesized on the endoplasmic reticulum by the pyridoxal
phosphate-dependent enzyme serine palmitoyl transferase,
the rate-limiting step in ceramide synthesis from L-serine
and palmitoyl coenzyme A [5]. After transport to the Golgi
apparatus, specialized glycosyltransferases transfer a glucose
[6] or galactose [7] residue in a β-glycosidic linkage to the
C1-hydroxyl of ceramide to produce glucosylceramide or
galactosylceramide. While the glucosylation of ceramide
occurs on the cytosolic surface of the Golgi [8,9], its galacto-
sylation can occur both in the endoplasmic reticulum and the
Golgi. However, most of the GSL arises from the glucosylation
rather than galactosylation of ceramide, a step catalyzed by the
rate-limiting enzyme glucosylceramide synthase (GlcT), an
enzyme essential for embryogenesis [10]. Glucosylceramide is
then transferred to the lumenal leaflet of the Golgi, where it is
modified by the addition of a galactose moiety to produce lac-
tosylceramide from which most of gangliosides derive by the
action of specific glycolipid-glycosyltransferases (GSL-GLTs)
[11–13] (Figure 1). Indeed, sequential addition of one, two, or
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Figure 1. Glucosylation of ceramide as the initial step in the synthesis of sialic-acid gangliosides GM3 and GD3. GlcT catalyzes
the transfer of a glucose residue to the carbon backbone of ceramide to yield glucosylceramide which then is transformed into
lactosylceramide. The addition of several sialic acids residues produces GM3-GT3.

three sialic acids to lactosylceramide results in the formation
of GM3, GD3, and GT3, respectively, whose carbon backbone
derives from ceramide. Since the synthesis of gangliosides
involves the trafficking of ceramide from the endoplasmic retic-
ulum to the Golgi, the characterization of this process may be
important in ganglioside-mediated signaling. The intracellular
trafficking of ceramide has been suggested to occur by vesicle-
dependent and—independent mechanisms [14,15]. However,
recent findings provided a new insight in this process with the
identification of a novel protein named CERT that mediates the
ATP-dependent transport of ceramide from the endoplasmic
reticulum to the Golgi in a vesicle-independent manner [12].
CERT is a cytoplasmic protein with a phosphatidylinositol-4-
monophosphate-binding (PtdIns4P) domain and a putative do-
main for lipid transfer. Indeed, the lipid-transfer-catalysing do-
main of CERT is responsible for its ability to specifically extract
ceramide from phospholipid bilayers, as the disruption of its
PtdIns4P-binding activity impairs its Golgi-targeting function
[16].

Since ceramide provides the carbon backbone of GSLs, their
synthesis is also dependent on the availability of ceramide gen-
eration. In addition to the de novo synthesis of ceramide by
serine-palmitoyl transferase or ceramide synthetase, ceramide
can arise from hydrolysis of sphingomyelin-engaging sphin-
gomyelinases (SMases) [17]. This pathway may be of signif-
icance in promoting specific macrodomain formation in the
plasma membrane, allowing oligomerization of certain cell
surface proteins such as ligated receptors (TNF family) [18].
Several SMases have been characterized of which two are of

relevance in signaling. The membrane-bound neutral SMase
(NSMase) with an optimum pH of approximately 7.5 and an
acidic SMase (ASMase) with an optimum pH of about 4.8 fur-
ther subclassified into an endosomal/lysosomal ASMase and a
secretory Zn2+-dependent SMase [17]. Apoptotic stimuli, such
as death ligands (e.g., Fas and TNF), chemotherapeutic agents,
or ionizing radiation, activate these SMases, accounting for the
ability of the inducing stimuli to generate ceramide with var-
ious kinetics and possibly at different intracellular locations.
However, their individual contribution to apoptotic cell death
is not clearly established and seems to depend on the kind of
apoptotic stimuli used and the cell type studied. For instance,
NSMase has been involved in the stress response mediating
the cytotoxic effects exerted by chemotherapeutic agents [19];
ASMase has been shown to mediate ionizing radiation-induced
cell death [20,21] as well as in the developmental death of
oocytes [22]. On the other hand, although the factor associated
with NSMase activation (FAN), an adaptor protein involved
in NSMase activation, has been shown to contribute to TNF-
induced fibroblast apoptosis and lipopolysaccharide and TNF-
induced lethality [23,24], the role of NSMase ablation itself in
TNF-induced apoptosis remains unknown. In contrast, ASMase
has been shown to mediate Fas-induced cell death in hepato-
cytes [25,26]. Furthermore, ASMase has been recently shown
to play a significant role in hepatocellular apoptosis and liver
damage induced by TNF through a dual mechanism involv-
ing GD3 generation and downregulation of MAT1A [27,28].
Thus, as illustrated by these recent findings on TNF signaling,
the role of ASMase-induced ceramide generation on apoptosis
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seems to be mediated by its conversion to GD3 as its downreg-
ulation by inhibition of GlcT with PDMP protects ASMase+/+

hepatocytes from TNF despite enhancement of TNF-stimulated
ceramide formation. In addition to providing GD3, ceramide
generated from ASMase is required for the efficient activation
of lysosomal cathepsin D by TNF [29], thus linking TNF re-
ceptor signaling to acidic compartments engagement.

GD3 and mitochondria: A dangerous interaction

Consistent with the relevance of mitochondria in the regulation
of apoptosis [30–32], and the recognized role of ceramide in
the stress response and cell death [17,33], early studies doc-
umented a direct effect of ceramide on isolated mitochondria
from rat liver [34]. These findings were subsequently confirmed
indicating that ceramide disrupts electron flow at complex III
of the respiratory chain, resulting in enhanced reactive oxy-
gen species (ROS) generation, release of cytochrome c, and
caspase activation [34–37]. In addition, the in situ generation
of ceramide within mitochondria by enforced mitochondrial
targeting of bacterial sphingomyelinase induces apoptosis in
MCF7 cells [38]. As mentioned above and consistent with the
structural features shared by ceramide and GD3, the ability of
ceramide to directly interact in vitro with isolated mitochondria
was reproduced with GD3 (Figure 2) [39–43]. Although GD3
clearly induced the release of cytochrome c, Smac/Diablo, and
AIF engaging the apoptosome in a cell-free system [39,41,43],
the underlying mechanisms responsible for the GD3 effects are
not completely known. The ability of GD3 to evoke the release

Figure 2. Role of GD3 in apoptosis. The interaction of GD3 with mitochondria elicits the mitochondrial apoptosome resulting in
activation of executioner caspase 3. The upregulation of ASMase by TNF elicits ceramide generation which can be converted into
GD3. The exact mechanism of ASMase by TNF is not fully understood at present, nor the route responsible for the trafficking of
GD3 to mitochondria.

of cytochrome c from mitochondria was mimicked by GD1a,
GD1b, GT1b, and GQ1b along with synthetic GD3 mimet-
ics, indicating the critical role of two sialic acid residues in
this effect [44]. According to the evidence provided, it appears
that GD3-stimulation of ROS was independent of Ca2+ and
preceded mitochondrial membrane permeabilization that me-
diates the release of cytochrome c and caspase 3 activation
[39]. Consistent with this sequence of events, antioxidants and
cyclosporin A prevented GD3-mediated effects in isolated mito-
chondria [39,43]. Moreover, the consequences of GD3-elicited
changes in mitochondria such as mitochondrial membrane per-
meabilization and subsequent release of proapoptotic proteins
from the intermembrane space of mitochondria were controlled
by the levels of mitochondrial GSH independent of the fluid-
ity state of mitochondrial membranes [43]. These observations
further support the view that GD3 induces a burst of ROS from
the respiratory chain. An interesting study indicated that the
apoptotic potential of GD3 is modulated by acetylation so that
acetylated GD3 (9AcGD3) is unable to elicit the change re-
ported for GD3 [45]. These provocative findings raise the ques-
tion as to why GD3 is active within mitochondria but not other
gangliosides with closely related structures such as 9AcGD3,
implying the existence of a GD3 receptor or flippase protein
that recognizes the structure of GD3, including the outer sialic
acid residue that becomes O-acetylated in 9AcGD3. In this re-
gard, truncated Bid, a proapoptotic cytosolic factor of the Bcl-2
family, displays high affinity toward acidic phospholipids and
is thought to be involved in membrane lipid transfer to mi-
tochondria [46]. It is thought that Bid affects the structural
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state of multidomain antiapoptotic Bcl-2 proteins in the outer
membrane by changing the lipid environment in mitochondria.
Whether truncated Bid or another Bid-like proapoptotic pro-
tein functions as a GD3 flippase remains unknown. It would be
interesting to test if mitochondria isolated from Bid−/− mice
respond to a GD3 challenge to elicit the described effects on rat
liver mitochondria.

GD3 trafficking to mitochondria

While these studies clearly established a direct effect of GD3
on isolated mitochondria, the relevant question was whether
the interaction between GD3 and mitochondria occurs in in-
tact cells thus contributing to apoptosis. The first suggestion
for this event was provided by DeMaria et al. examining the
fate of myeloid and lymphoid cell lines in response to Fas and
ceramide [47]. These pioneering studies demonstrated that the
ceramide increase in response to Fas was rapidly converted into
GD3 by GD3 synthase so that its knockdown by antisense RNA
prevented Fas-induced apoptosis. Although, the accumulation
of GD3 in response to Fas was accompanied by dissipation of
mitochondrial membrane potential, these data did not demon-
strate the interaction of GD3 with mitochondria [47]. Recent
studies using immunoelectron and laser confocal microscopy
showed the physical interaction and accumulation of GD3 in
mitochondria from human lymphoblastoid CEM cells [48], in-
tact hepatocytes [49], or human colon HT-29 cells [50] exposed
to C2-ceramide or TNF. The trafficking of GD3 to mitochon-
dria was observed in hepatocytes in response to various apop-
totic inducers and was preceded by a gradual disappearance of
GD3 from the plasma membrane and its co-localization with
Rab5 and Rab7 in early and late endosomes via coordinated
secretory/endocytic vesicular trafficking [49]. The disruption
of this pathway by actin-disrupting agents, e.g. latrunculin A,
prevented the interaction of GD3 with mitochondria sparing
sensitized hepatocytes to TNF exposure. In line with these find-
ings, the colocalization of GD3 with ezrin, an actin cytoskele-
ton protein, mediating Fas-induced apoptosis in CEM cells has
been recently described [51]. Furthermore, inhibition of GlcT
by PDMP, disruption of microtubules, or plasma membrane
cholesterol extraction by nocodazole and filipin, respectively,
prevented the redistribution of GD3 from the plasma membrane
to mitochondria [49], indicating that the newly synthesized GD3
undergoes a regulated trafficking to the plasma membrane and
from here to mitochondria. The exact route followed by GD3 to
target mitochondria is presently unknown. Although these ob-
servations in hepatocytes support the involvement of endosomal
vesicle movement in the targeting of GD3 to mitochondria, a
direct targeting of GD3 to mitochondria resulting from the con-
tinuity and contact between the Golgi/endoplasmic reticulum
network with mitochondrial membranes cannot be ruled out at
present [52,53]. Since GD3 is synthesized within the lumen
of the Golgi, being then embedded in the outer leaflet of the
plasma membrane, either of the above delivery systems would

cause GD3 incorporation into the inner leaflet of the outer mi-
tochondrial membrane [54]. Thus, the trafficking of endosomal
vesicles through actin cytoskeleton may be part of the TNF/Fas
multicomponent signaling complex delivering death signals,
e.g., GD3, to mitochondria.

GSLs as resourceful proapoptotic lipids:
Role in cancer therapy

Cell death/survival is a dynamic process that reflects the bal-
ance of opposing signals promoting death or survival pathways.
NF-κB is a transcription factor that besides to its role as a
master regulator of the inflammatory and immune responses
it is also known to induce the expression of proteins promot-
ing cell survival [55–57]. Indeed activation of NF-κB promotes
cell survival through induction of antiapoptotic genes includ-
ing Bcl-XL, c-IAP1, c-IAP2, A1/Bfl1, or modulation of tu-
mor suppressor PTEN [58–63]. NF-κB is usually kept inactive
in the cytoplasm through association with an endogenous in-
hibitor protein of the IκB (inhibitor of NF-κB) family. The
most common pathway leading to NF-κB activation involves
the phosphorylation of IκB at specific serine residues that tar-
gets its subsequent degradation by the proteasome [55,56]. The
released subunits of NF-κB then translocate to the nuclei where
they bind to specific sites in the promoter/enhancer region of
target genes. Thus accordingly, suppressing the activation of
the survival pathway dependent on NF-κB may have profound
consequences in the response of cancer cells to therapy. In this
regard, prior studies reported the ability of GD1a and GM1 to
suppress the activation of NF-κB that blunts antitumor immune
responses [64]. In addition, GD3 was shown to interfere with
the nuclear translocation of active NF-κB members to the nu-
clei thus rendering rat hepatocytes susceptible to TNF-mediated
cell death [42]. Furthermore, gangliosides expressed in renal
cell carcinomas promoted the degradation of RelA/p50 dimers
in T cells [65], and the modulation of cell cycle and survival
of keratinocytes by GT1b was mediated by its direct inhibition
of Akt signaling [66]. Based on this novel function of gan-
gliosides in abrogating the induction of survival signals, GSLs
may have an emerging role in cancer therapy. For instance, re-
cent observations reported the role of GD3 to sensitize human
hepatoblastoma cells HepG2 to cancer therapy that was depen-
dent on its ability to blunt NF-κB-mediated survival signals
induction [67]. While ionizing radiation and daunorubicin in-
duced NF-κB activation and transactivation, preincubation of
HepG2 cells with a sublethal dose of GD3 abrogated the nu-
clear translocation of RelA/p50, thus blunting NF-κB-mediated
gene induction. In this paradigm, cells were sensitized to radio-
therapy due to overaccumulation of ROS/RNS generated from
mitochondria [67]. In comparing the action of various GSLs in
promoting ROS generation from mitochondria and NF-κB in-
activation, it appears that the presence of carbohydrate residues
is required for the interference with the nuclear translocation
of NF-κB [42]. In addition, GM3 overexpression was shown
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to reduce malignant potential in murine bladder cancer through
enhanced apoptosis [68]. Furthermore, GM3 and GD3, puri-
fied from human melanoma tumors, inhibit the phenotypic and
functional differentiation of monocyte-derived dendritic cells
induced by CD154 in a dose-dependent manner. Additions of
GM3 and GD3 decrease the viable cell yield and induce sig-
nificant monocyte-derived dendritic cell apoptosis, decreasing
interleukin-2 (IL-2) and increasing interleukin-10 (IL-10) con-
centration in monocyte-derived dendritic cells. This cytokine
pattern may hamper an efficient antitumor immune response
[69]. Similar to the effect elicited by GD3 on HepG2 cells,
exogenous GM1 was shown to induce thymocyte apoptosis,
involving suppression of NF-κB [70]. Hence, the current data
uncover gangliosides as multifunctional signaling lipids that
induce apoptosis not only by a direct effect on mitochondria
but also by suppressing survival genes, a dual personality of
relevance to overcome cancer therapy resistance.

GSLs and multidrug resistance

Despite observations in the early 1980s indicating differences
in GSLs composition of drug-induced resistant cells and their
inability to synthesize complex gangliosides [71], the involve-
ment of GSLs in drug-induced cancer cell death is not fully
established and relates to the ultimate intermediate responsi-
ble for cell death ceramide vs GSLs. The modulation of ce-
ramide levels induced by cancer therapy may determine the
response of cancer cells to therapy. GlcT, the enzyme that trans-
fers a glucose residue to the carbon backbone of ceramide [6]
(Figure 1), yields glucosylceramide diminishing the availability
of free ceramide. In multridrug resistant cells, ceramide gluco-
sylation contributes to drug resistance and the inhibition of GlcT
sensitizes cells to various drug treatments [72–74]. However,
recent observations showed that melanoma cells lacking GlcT
activity were equally sensitive to chemotherapy [75] indicating
that the involvement of GlcT in drug resistance is not univer-
sal. Interestingly, recent data showed a cytoprotective role of
GlcT inhibition against daunorubicin-induced apoptosis in hu-
man leukemic cell lines [76]. While GlcT inhibitors blocked
drug-induced apoptosis, galactosylation was associated with
drug resistance. Thus, the generation of ceramide serves as the
precursor for antagonizing GSLs; while GD3 promoted apop-
tosis, galactosylceramide elicited an antiapoptotic role. In line
with this, GlcT inhibition by antisense knockdown and the clas-
sic inhibitor PDMP [77] was also shown to drastically decrease
the apoptosis induced by N -(4-hydroxyphenyl)retinamide in
neuroepithelioma cells [78]. Hence, although the multidrug-
resistance in cancer cells is a complex phenomenon involving
the interplay of different molecular mechanisms and multistep
alteration of the sphingolipid metabolism [79], the current ev-
idence indicates that gangliosides may function as sensitizing
agents enhancing the anti-cancer properties of currently used
therapy.

GSLs in disease

The emerging role of GSLs in cell signaling and in the regula-
tion of apoptosis impinges on the development of pathological
processes. This is of particular significance in states in which
overproduction of TNF is essential for the progression of the
disease. As alluded above, the generation of GSLs, e.g. GD3,
is modulated by the availability of ceramide and TNF is known
to increase cellular ceramide content [17,27,34]. In alcohol-
induced liver disease (ALD), the pathogenic role for TNF has
been established [80,81] and ASMase has been described to
contribute to TNF-mediated hepatocellular apoptosis and liver
damage [27,28]. Recent studies indicated that alcohol feeding
to mouse enhanced the activity of ASMase induced by LPS
administration resulting in elevated tissue content of ceramide
[82]. In addition, previous findings have shown that alcohol
feeding potentiates the mitochondrial membrane permeabiliza-
tion induced by GD3 [83] and the treatment of mice with LPS
induced the expression of GlcT mRNA leading to enhanced
levels of glucosylceramide and GM3 in the liver [84]. On the
other hand, since alcohol feeding depletes the mitochondrial
GSH content [85–88], which controls the ability of GD3 to in-
duce mitochondrial membrane permeabilization [41,43], it is
conceivable that alcohol-stimulated GD3 may play an impor-
tant role in the progression of ALD, a line of research currently
under investigation.

Liver natural killer T cells (NKT) are specifically stimulated
by α-galactosylceramide and mediate intrahepatic immunity
to several infections and certain hepatic disorders (e.g.,
viral-induced hepatitis) [89–91]. α-galactosylceramide binds
to CD1d, which in turn up-regulates Fas ligands on the surface
of liver NKT and induces hepatocyte apoptosis through the
Fas-Fas ligand signaling pathway [92–94]. In addition, a
recent study reported that mice immunized with the human
melanoma cell line SK-MEL-28 (GD3+ GM2− CD1−)
results in a GD3-reactive natural killer T (NKT) cell response,
indicating the cross-presentation of GD3 to NKT cells [95].
Thus, upregulation of specific GSLs, e.g., GD3 levels, may
play a key role in liver injury mediated by both an expansion
of liver NKT cells and up-regulation of hepatocyte Fas
antigen.

GD3 may play also a key role in liver fibrogenesis. The depo-
sition of collagen in the liver is a dynamic process mediated by
activation of stellate cells (HSC) [96]. The activation of these
cells occur in response to a wide variety of stimuli (viral in-
fection, alcohol, etc.) so that liver fibrogenesis is an integrated
response to liver injury and a characteristic stigma of liver dis-
eases. Although the molecular mechanisms responsible for liver
fibrogenesis are not completely understood, an important aspect
in the regulation of this process is the resistance of activated
HSC to apoptosis induction, and thus the characterization of
agents that induce apoptosis of HSC may be of relevance in
liver fibrogenesis. In this regard, using a large scale sequenc-
ing of a 3

′
-directed cDNA library, the upregulation of O-acetyl
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disialoganglioside synthase was detected both in activated rat
HSCs and human cirrhotic livers [97]. Consistent with the loss
of apoptogenic potential of acetylated 9OAcGD3 [45], it is con-
ceivable that the upregulation of O-acetyl disialoganglioside
synthase may constitute a critical step favoring perpetuation of
activated HSC and hence fibrogenesis. The ability of exogenous
addition of GD3 to activated HSCs to induce apoptosis remains
to be investigated.

GM3 represents the simplest ganglioside oligosacchararide
in the synthesis of gangliosides and is the most widely
distributed ganglioside among tissues and serves as a precursor
for most of the more complex ganglioside species. In addition
to its structural role, GM3 has been found to inhibit intrinsic
tyrosine kinase activity of soluble receptors [98,99], and
GM3 depressed insulin-mediated signaling in cultured cells.
In models of insulin resistance, an overexpression of GM3
synthase has been described [100], and enhanced insulin
sensitivity in mice lacking GM3 has been reported [101].
Interestingly, these mutant mice were protected from high-fat
diet-induced insulin resistance, demonstrating that GM3 has
an important role in the regulation of insulin sensitivity.
Thus, through impairment of insulin receptor phosphorylation
GM3 may contribute to non-alcoholic steatohepatitis, a liver
disease characterized by steatosis and insulin insensitivity
[102].

The brain is particularly enriched in GSLs and disregulation
of GSLs metabolism contributes to neurological diseases
[103]. In the healthy brain, GD3 is found preferentially in
early oligodendrocyte precursors, microglia, and some defined
neuronal cell types, and the pattern of ganglioside composition
and distribution changes during the progression of neurologic
diseases [104–107]. Microglia increase their GD3 content upon
activation, and elevated cerebrospinal fluid GD3 levels have
been reported in multiple sclerosis and leukoaraiosis [108,109].
Moreover, the GD3 content is increased in multiple sclerosis
plaques in comparison to healthy white matter [110], while
GM1, the most abundant ganglioside in normal brain, decreases
[111]. Recent findings reported that activated microglia cells in
culture by LPS or bacteria exposure induced the synthesis and
secretion of GD3 into the culture medium, resulting in selective
toxicity to primary oligodendrocytes with no significant effects
on microglia, astrocytes, or primary neurons (cerebellar gran-
ule cells) [112]. Consistent with the earlier reports on the effect
of GD3 on rat liver mitochondria, GD3 induced morphological
and functional changes in oligodendrocyte mitochondria
resulting in the release of cytochrome c and caspase activation.
Thus, these findings may have implications in several neuro-
logic disorders in which migroglia cells become activated, e.g.,
white matter degeneration, HIV-induced neurodegeneration,
or medulloblastoma [107,109,113], functioning as the source
of GD3 which then acts on specific populations of cells within
the brain. Thus, the preceding studies illustrate the relevance
of GSLs as modulators of cell growth and signaling pathways
[114].

Concluding remarks

The scenario of GSLs in biology has changed in recent years. In
addition to their predominant role as structural components of
membranes, the available evidence indicates they play a regula-
tory role in signaling pathways. Notably, sialic acid-containing
GSLs, best characterized for GD3, exert a dual role in apop-
tosis regulation by interacting with and recruiting mitochon-
dria to apoptotic pathways, while suppressing the activation
of survival pathways. In addition the current evidence points
to GD3 as a signaling lipid mediating the apoptotic effect of
death ligands e.g., Fas or TNF. Combined, these novel func-
tions of GSLs may have important consequences in cancer
therapy and may prompt the search of strategies aimed to in-
crease selectively the GD3 content of tumor cells to maxi-
mize cancer therapy. In the future we will witness a progres-
sion of knowledge in this area, in which the role of specific
GSLs in disease progression will be unveiled, thus provid-
ing the basis to interfere with or halt disease pathogenesis
with pharmacologic or genetic approaches to regulate GSLs
metabolism.
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